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Abstract. In this paper, we prove some coupled fixed point theorems for nonlinear contrac-
tive mappings which doesn’t have the mixed monotone property, in the context of partially
ordered G-metric spaces. Hence, these results can be applied in a much wider class of prob-
lems. Our results improve the result of D. Dorić, Z. Kadelburg and S. Radenović [Appl.
Math. Lett. (2012)]. We also present two examples to support these new results.
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1. Introduction and Preliminaries
The metric fixed point theory is very important and useful in Mathematics. It can be

applied in various areas, such as: variational inequalities, optimization, approximation theory,
etc. In many recent publications in the field of fixed point theory auxiliary functions are used
to generalize the contractive conditions on the mappings defined on various spaces, see for
example [11, 13, 15, 16, 30, 31].

G-metric spaces have been introduced by Mustafa and Sims in [20, 21]. This is a general-
ization of metric spaces in which every triplet of elements is assigned to a non-negative real
number. Fixed point theory in this space was initiated in [17]. After that several fixed point
results were proved in this spaces, see for example [3, 4, 9, 18, 19, 22, 25].

Recently, many results on fixed point problems have been considered in partially ordered
probabilistic metric spaces [10] and in partially ordered G-metric spaces [8, 25]. In [14],
coupled fixed point results in partially ordered metric spaces were established by Bhaskar
and Lakshmikantham. In [1, 2, 6, 7, 8, 14, 23, 24, 26, 27, 28, 29] several coupled fixed point
and coincidence point results are presented.

The aim of this paper is to establish coupled coincidence and coupled common fixed point
results for mappings without mixed g-monotone property in partially ordered G-metric spaces.
We also give some examples and applications. Before stating and proving our results, we recall
some definitions and properties in G-metric spaces that are used in this paper.
Definition 1.1 ([21]). Let X be a non-empty set, G : X × X × X → R+ be a function
satisfying the following properties:
(G1) G(x, y, z) = 0 if x = y = z.
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(G2) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y.
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y ̸= z.
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables).
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).
Then the function G is called a generalized metric, or, more specially, a G-metric on X, and
the pair (X,G) is called a G-metric space.

Definition 1.2 ([21]). Let (X,G) be a G-metric space, and let {xn} be a sequence of points
of X. We say that {xn} is G-convergent to x ∈ X if lim

n,m→∞
G(x, xn, xm) = 0, that is, for any

ϵ > 0, there exists N ∈ N such that G(x, xn, xm) < ϵ, for all n,m ≥ N . We call x the limit
of the sequence and write xn → x or lim xn = x.

Lemma 1.3 ([21]). Let (X,G) be a G-metric space. The following are equivalent:
(1) {xn} is G-convergent to x.
(2) G(xn, xn, x) → 0 as n → ∞.
(3) G(xn, x, x) → 0 as n → ∞.
(4) G(xn, xm, x) → 0 as n,m → ∞.

Definition 1.4 ([21]). Let (X,G) be a G-metric space, A sequence {xn} is called a G-Cauchy
sequence if, for any ϵ > 0, there is N ∈ N such that G(xn, xm, xl) < ϵ for all m,n, l ∈ N, that
is, G(xn, xm, xl) → 0 as n,m, l → ∞.

Lemma 1.5 ([20]). Let (X,G) be a G-metric space. Then the following are equivalent:
(1) the sequence {xn} is G-Cauchy
(2) for any ϵ > 0, there exists N ∈ N such that G(xn, xm, xm) < ϵ for all m,n ≥ N.

Lemma 1.6 ([8]). Let (X,G) be a G-metric space. A mapping f : X → X is G-continuous
at x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever {xn} is
G-convergent to x, {f(xn)} is G-convergent to f(x).

Definition 1.7 ([21]). A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition 1.8 ([20]). A G-metric space (X,G) is called a symmetric G-metric space if
G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Definition 1.9 ([21]). Let (X,G) be a G-metric space. A mapping F : X ×X → X is said
to be continuous if for any two G-convergent sequences {xn} and {yn} converging to x and y
respectively, then {F (xn, yn)} is G-convergent to F (x, y).

In 2006 the concept of a mixed monotone property has been introduced by Bhaskar and
Lakshmikantham in [5].

Definition 1.10 ([5]). Let (X,⪯) be a partially ordered set. A mapping F : X × X → X
is said to have mixed monotone property if F (x, y) is monotone non-decreasing in x and is
monotone non-increasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X,x1 ⪯ x2 implies F (x1, y) ⪯ F (x2, y),

y1, y2 ∈ X, y1 ⪯ y2 implies F (x, y2) ⪯ F (x, y1).

In 2009 Lakshmikantham and Ćirić in [14] introduced the concept of a g-mixed monotone
mapping.
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Definition 1.11 ([14]). Let (X,⪯) be a partially ordered set. Let us consider mappings
F : X ×X → X and g : X → X. The map F is said to have mixed g-monotone property if
F (x, y) is monotone g-non-decreasing in x and is monotone g-non-increasing in y; that is, for
any x, y ∈ X,

x1, x2 ∈ X, gx1 ⪯ gx2 → F (x1, y) ⪯ F (x2, y),

y1, y2 ∈ X, gy1 ⪯ gy2 → F (x, y2) ⪯ F (x, y1).

An element (x, y) ∈ X ×X is called a coupled fixed point of a mapping F : X ×X → X if
F (x, y) = x and F (y, x) = y [5].

Also An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings
F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy [14].

In 2011 Choudhury and Maity established some coupled fixed point results for the mixed
monotone mappings in [8].

Theorem 1.12 ([8, Theorem 2.1]). Let (X,⪯) be a partially ordered set and G be a G-metric
on X such that (X,G) is a complete G-metric space. Let F : X × X → X be a mapping
having the mixed monotone property on X. Assume that there exists k ∈ [0, 1) such that

G(F (x, y), F (u, v), F (z, w)) ≤ k

2
[G(x, u, z) +G(y, v, w)],(1.1)

for all x, y, u, v, z, w ∈ X with x ⪰ u ⪰ z and y ⪯ v ⪯ w where either u ̸= z or v ̸= w.
If there exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0) and y0 ⪰ F (y0, x0), then F has a coupled
fixed point in X.

Definition 1.13 ([14]). We say that two mappings F : X × X → X and g : X → X are
commutative if

g(F (x, y)) = F (gx, gy) ∀x, y ∈ X.

The following definition which was given by Dorić, Kadelburg and Radenović in [12], will
be used in this paper.

Definition 1.14. Let (X, d) be a metric space and let g : X → X, F : X × X → X. The
mappings g and F are said to be compatible if

lim
n→∞

d(gF (xn, yn), F (gxn, gyn)) = 0,

and
lim
n→∞

d(gF (yn, xn), F (gyn, gxn)) = 0,

hold whenever {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

gxn and
lim
n→∞

F (yn, xn) = lim
n→∞

gyn.

Definition 1.15 ([12]). If elements x, y of a partially ordered set (X,⪯) are comparable (i.e.,
x ⪯ y or y ⪯ x holds) we will write x ≍ y. Let g : X → X and F : X × X → X be two
mappings. We will consider the following condition, if x, y, u, v ∈ X are such that
(1.2) gx ≍ F (x, y) = gu then F (x, y) ≍ F (u, v).

In particular, when g = IX , it reduces to for all x, y, v ∈ X if
(1.3) x ≍ F (x, y) then F (x, y) ≍ F (F (x, y), v).
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In 2012, Dorić, Kadelburg and Radenović have been shown in a simple example that these
conditions may be satisfied when F does not have the g-mixed monotone property. They also
established some coupled fixed point results for mappings without mixed monotone property
in [12].

Theorem 1.16 ([12, Theorem 2.3]). Let (X, d,⪯) be a complete partially ordered metric
space and let g : X → X and F : X ×X → X. Suppose that the following hold:

(i) g is continuous and g(X) is closed;
(ii) F (X ×X) ⊆ g(X) and g and F are compatible;

(iii) g and F satisfy property (1.2);
(iv) there exist x0, y0 ∈ X such that gx0 ≍ F (x0, y0) and gy0 ≍ F (y0, x0);
(v) there exist k ∈ [0, 1) such that for all x, y, u, v ∈ X satisfying gx ≍ gu and gy ≍ gv,

d(F (x, y), F (u, v)) ≤ k max{d(gx, gu), d(gy, gv)},
hold true;

(vi) F is a continuous or if xn → x in X, then xn ≍ x for n sufficiently large.
Then there exist u, v ∈ X such that gu = F (u, v) and gv = F (v, u), that is, g and F have a
coupled coincidence point.

The main purpose of this paper is to prove some coupled fixed point theorems for nonlin-
ear contractive mappings which don’t have the mixed monotone property in the context of
partially ordered G-metric spaces. We also present two examples to support our new results.

2. Main Results
We start this section with a new definition.

Definition 2.1. Let X be a G-metric space let g : X → X, F : X×X → X be two mappings.
The mappings g and F are said to be G-compatible if

lim
n→∞

G(gF (xn, yn), F (gxn, gyn), F (gxn, gyn)) = 0,

and
lim
n→∞

G(gF (yn, xn), F (gyn, gxn), F (gyn, gxn)) = 0,

hold whenever {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

gxn and
lim
n→∞

F (yn, xn) = lim
n→∞

gyn.

Remark 2.2. In this paper, if the elements x, y, z of a partially ordered set (X,⪯) are
comparable (i.e., x ⪯ y ⪯ z or z ⪯ y ⪯ x holds) we will write x ≍ y ≍ z.

The following theorem is the first main result of this paper.

Theorem 2.3. Let (X,⪯) be a partially ordered set and G be a G-metric on X such that (X,G)
is a complete G-metric space. Suppose that for two mappings g : X → X and F : X×X → X
there exists k ∈ [0, 1) such that
(2.1) G(F (x, y), F (u, v), F (z, w)) ≤ k max{G(gx, gu, gz), G(gy, gv, gw)},
for all x, y, u, v, z, w ∈ X with gx ≍ gu ≍ gz and gy ≍ gv ≍ gw. Suppose also that g is
continuous, g(X) is closed, F (X×X) ⊆ g(X), g and F are G-compatible and F and g satisfy
property (1.2). Suppose that either
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(a) F is continuous,
or

(b) if xn → x in X, then xn ≍ x for n sufficiently large.
If there exist x0, y0 ∈ X such that gx0 ≍ F (x0, y0) and gy0 ≍ F (y0, x0), then g and F
have a coupled coincidence point, that is, there exist u, v ∈ X such that gu = F (u, v) and
gv = F (v, u). Moreover, if for every two coupled coincidence point (x, y) and (u, v) if (x, y)
and (u, v) are comparable (x ≍ u, y ≍ v ), then gx = gu and gy = gv.

Proof. Let x0, y0 ∈ X such that gx0 ≍ F (x0, y0) and gy0 ≍ F (y0, x0). Since F (X×X) ⊆ g(X),
we can choose x1, y1 ∈ X such that gx1 = F (x0, y0) and gy1 = F (y0, x0). Again since
F (X ×X) ⊆ g(X), we can choose x2, y2 ∈ X such that gx2 = F (x1, y1) and gy2 = F (y1, x1).
Continuing in this way we construct two sequences {xn} and {yn} in X such that for all
n ≥ 0,

(2.2) g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn).

Now we prove that for all n ≥ 0

(2.3) g(xn) ≍ g(xn+1) and g(yn) ≍ g(yn+1).

We shall use the mathematical induction. Let n = 0. Since gx0 ≍ F (x0, y0) and gy0 ≍
F (y0, x0), in view of gx1 = F (x0, y0) and gy1 = F (y0, x0), we have g(x0) ≍ g(x1) and
g(y0) ≍ g(y1), that is, (2.3) hold for n = 0. We presume that (2.3) hold for some n > 0. As
F and g have property (1.2) and g(xn) ≍ g(xn+1), g(yn) ≍ g(yn+1), from (2.2), we get

g(xn+1) = F (xn, yn) ≍ F (xn+1, yn+1) = g(xn+2),(2.4)

and

g(yn+1) = F (yn, xn) ≍ F (yn+1, xn+1) = g(yn+2).(2.5)

Then from (2.4) and (2.5) we obtain

(2.6) g(xn+1) ≍ g(xn+2) and g(yn+1) ≍ (yn+2).

Thus by the mathematical induction, we conclude that (2.3) holds for all n ≥ 0.
If for some n, we have (gxn+1, gyn+1) = (gxn, gyn), then F (xn, yn) = gxn and F (yn, xn) =

gyn, that is, F and g have a coincidence point. So from now on, we assume (gxn+1, gyn+1) ̸=
(gxn, gyn), for all n ∈ N , that is, we assume that either gxn+1 = F (xn, yn) ̸= gxn or gyn+1 =
F (yn, xn) ̸= gyn.
Since g(xn) ≍ g(xn−1) and g(yn) ≍ g(yn−1), from contractive condition (2.1), we have

G(gxn+1, gxn+1, gxn) = G(F (xn, yn), F (xn, yn), F (xn−1, yn−1))

≤ k max{G(gxn, gxn, gxn−1), G(gyn, gyn, gyn−1)},

and

G(gyn+1, gyn+1, gyn) = G(F (yn, xn), F (yn, xn), F (yn−1, xn−1))

≤ k max{G(gyn, gyn, gyn−1), G(gxn, gxn, gxn−1)},

and hence

max {G(gxn+1, gxn+1, gxn), G(gyn+1, gyn+1, gyn)}
≤ k max{G(gxn, gxn, gxn−1), G(gyn, gyn, gyn−1)},
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for each n ∈ N. By induction we get that
max {G(gxn+1, gxn+1, gxn), G(gyn+1, gyn+1, gyn)}

≤ k max{G(gxn, gxn, gxn−1), G(gyn−1, gyn−1, gyn−2)}
≤ k2 max{G(gxn−1, gxn−1, gxn−2), G(gyn, gyn, gyn−1)}
≤ ... ≤ kn max{G(gx1, gx1, gx0), G(gy1, gy1, gy0)},

Now, we shall show that {gxn} and {gyn} are Cauchy sequences. For all positive integers
n,m ∈ N, n < m we have by the rectangle inequity (G5 of Definition 1.1 ) that

G(gxm, gxm, gxn) ≤ G(gxm, gxm, gxm−1) +G(gxm−1, gxm−1, gxm−2)

+...+G(gxn+1, gxn+1, gxn)

≤ km−1 max{G(gx1, gx1, gx0), G(gy1, gy1, gy0)}
+km−2 max{G(gx1, gx1, gx0), G(gy1, gy1, gy0)}
+...+ kn max{G(gx1, gx1, gx0), G(gy1, gy1, gy0)}

= (km−1 + km−2 + ...+ kn)max{G(gx1, gx1, gx0), G(gy1, gy1, gy0)}
= kn(1 + k + ...+ km−n−1)max{G(gx1, gx1, gx0), G(gy1, gy1, gy0)}

<
kn

1− k
max{G(gx1, gx1, gx0), G(gy1, gy1, gy0)}.

Letting m,n → ∞ in above inequality, we conclude that lim
m,n→∞

G(gxm, gxm, gxn) = 0, and
similarly lim

m,n→∞
G(gym, gym, gyn) = 0. Therefore, {gxn} and {gyn} are Cauchy sequences

and, since g(X) is closed in a complete metric space there exists u, v ∈ g(X) such that
(2.7) lim

n→∞
gxn = lim

n→∞
F (xn, yn) = u and lim

n→∞
gyn = lim

n→∞
F (yn, xn) = v.

G-compatibility of g and F implies that
lim
n→∞

G(gF (xn, yn), F (gxn, gyn), F (gxn, gyn)) = 0,(2.8)

and
lim
n→∞

d(gF (yn, xn), F (gyn, gxn), F (gyn, gxn)) = 0.

Now, suppose that assumption (a) holds. Using rectangle inequality (G5 of Definition 1.1 )
we have

G(gu, F (gxn, gyn), F (gxn, gyn)) ≤ G(gu, gF (xn, yn), gF (xn, yn))

+G(gF (xn, yn), F (gxn, gyn), F (gxn, gyn)).(2.9)
Passing to the limit in (2.9) when n → ∞ and using (2.8) and continuity of g and F we
get that G(gu, F (u, v), F (u, v)) = 0, that is, gu = F (u, v). Similarly, we can show that
F (v, u) = gv.

Finally, suppose that (b) holds. Since gxn → u and gyn → v and u, v ∈ g(X). We get that
gxn ≍ u = gx and gyn ≍ v = gy for some x, y ∈ X and n sufficiently large. For such n, using
(2.1) we have

G(F (x, y), gx, gx) ≤G(F (x, y), gxn+1, gxn+1) +G(gxn+1, gx, gx)

=G(F (x, y), F (xn, yn), F (xn, yn)) +G(gxn+1, gx, gx)

≤kmax{G(gx, gxn, gxn), G(gy, gyn, gyn)}+G(gxn+1, gx, gx)
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Taking the limit when n → ∞, we get that G(F (x, y), gx, gx) = 0. Hence gx = F (x, y) and
similarly gy = F (y, x). This completes the proof. □

Remark 2.4. Note that in the case (b), continuity of g and G-compatibility of (g, F ) as-
sumptions were not needed in the proof.

Remark 2.5. Theorem 2.3 remains valid if the right-hand side of condition (2.1) is replaced
by kG(gx, gu, gz) + lG(gy, gv, gw), for some k, l ≥ 0 with k + l < 1, because

kG(gx, gu, gz) + lG(gy, gv, gw) ≤ (k + l)max{G(gx, gu, gz), G(gy, gv, gw)},

which reduces to condition (1.1) of Theorem 1.12 if g = IX and k = l.

The following theorem is a direct result of Theorem 2.3.

Theorem 2.6. Let (X,⪯) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Suppose that there exist k ∈ [0, 1) and F : X ×X → X
such that
(2.10) G(F (x, y), F (u, v), F (z, w)) ≤ k max{G(x, u, z), G(y, v, w)},

for all x, y, u, v, z, w ∈ X with x ≍ u ≍ z and y ≍ v ≍ w. Suppose also F satisfy property
(1.3). Suppose that either

(a) F is continuous,
or

(b) if xn → x in X, then xn ≍ x for n sufficiently large.
If there exist x0, y0 ∈ X such that x0 ≍ F (x0, y0) and y0 ≍ F (y0, x0), then F has a coupled
fixed point,that is, there exist u, v ∈ X such that u = F (u, v) and v = F (v, u). Moreover, if for
every two coupled fixed point (x, y) and (u, v) if (x, y) and (u, v) are comparable (x ≍ u, y ≍ v),
then x = u and y = v.

Proof. Let g = IX and apply Theorem 2.3. □

The following theorem is the second main result of this paper that extends Theorem 1.16.

Theorem 2.7. Let (X,⪯) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Suppose that there exist k ∈ [0, 1), g : X → X and
F : X ×X → X such that
(2.11) G(F (x, y), F (x, y), F (u, v)) ≤ k max{G(gx, gx, gu), G(gy, gy, gv)},

for all x, y, u, v ∈ X with gx ≍ gu and gy ≍ gv. Suppose also that g is continuous, g(X)
is closed, F (X ×X) ⊆ g(X), g and F are G-compatible and F and g satisfy property (1.2).
Suppose that either

(a) F is continuous,
or

(b) if xn → x in X, then xn ≍ x for n sufficiently large.
If there exist x0, y0 ∈ X such that gx0 ≍ F (x0, y0) and gy0 ≍ F (y0, x0), then g and F have a
coupled coincidence point,that is, there exist u, v ∈ X such that gu = F (u, v) and gv = F (v, u).
Moreover, if for every two coupled coincidence point (x, y) and (u, v) if (x, y) and (u, v) are
comparable (x ≍ u, y ≍ v), then gx = gu and gy = gv.

Proof. The proof is similar to the proof of Theorem 2.3. □
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Remark 2.8. By defining G(x, y, z) = d(x,y)+d(y,z)+d(z,x)
2 , in Theorem 2.7, we conclude The-

orem 1.16.
Now we shall prove the existence and uniqueness theorem of a coupled common fixed point.

If (X,⪯) is a partially ordered set, we endow the product set X ×X with the partial order
▷ defined by
(2.12) (x, y)▷ (u, v) ⇔ x ⪯ u and v ⪯ y.

Theorem 2.9. In addition to the hypotheses of Theorem 2.3, suppose that,
(c) for every two elements (x, y), (u, v) ∈ X × X, there exists (w, z) ∈ X × X such that
(F (w, z), F (z, w)) is comparable to both (F (x, y), F (y, x)) and (F (u, v), F (v, u)).
Then F and g have a unique common coincidence fixed point, that is, there exists a unique
(p, q) ∈ X ×X such that p = gp = F (p, q) and q = gq = F (q, p).
Proof. From Theorem 2.3, the set of coupled coincidence is non-empty. We shall show that
if (x, y) and (u, v) are coupled coincidence points, that is, if gx = F (x, y), gy = F (y, x),
gu = F (u, v) and gv = F (v, u), then
(2.13) gx = gu and gy = gv.

By assumption, there exists (w, z) ∈ X × X such that (F (w, z), F (z, w)) is comparable to
both (F (x, y), F (y, x)) and (F (u, v), F (v, u)). Without restriction to the generality, we can
assume that

(F (x, y), F (y, x)) ▷ (F (w, z), F (z, w))

(F (u, v), F (v, u)) ▷ (F (w, z), F (z, w)).

Put w0 = w, z0 = z and choose w1, z1 ∈ X such that gw1 = F (w0, z0) and gz1 = F (z0, w0).
Then, similarly as in the proof of Theorem 2.3, we can inductively define sequences {gwn}
and {gzn} in X by
(2.14) gwn+1 = F (wn, zn) and gzn+1 = F (zn, wn)

for n ∈ N. By taking x0 = x1 = x2 = ... = xn = x, y0 = y1 = y2 = ... = yn = y,
u0 = u1 = u2 = ... = un = u and v0 = v1 = v2 = ... = vn = v, for all n ∈ N, we have:

gxn = F (x, y), gyn = F (y, x) and gun = F (u, v), gvn = F (v, u).(2.15)
Since

(F (x, y), F (y, x)) = (gx1, gy1) = (gx, gy)▷ (F (w, z), F (z, w)) = (gw1, gz1),

then gx ≍ gw1 and gy ≍ gz1. Using that F satisfy property (1.3), one can show easily that
gx ≍ gwn and gy ≍ gzn for all n ≥ 1. Thus, from (2.1), we get

G(gwn+1, gx, gx) = G(F (wn, zn), F (x, y), F (x, y))

≤ k max{G(gwn, gx, gx), G(gzn, gy, gy)},(2.16)
and

G(gzn+1, gy, gy) = G(F (zn, wn), F (y, x), F (y, x))

≤ k max{G(gzn, gy, gy), G(gwn, gx, gx)}.(2.17)
From (2.16) and (2.17), we have

max{G(gwn+1, gx, gx), G(gzn+1, gy, gy)}
≤ k max{G(gwn, gx, gx), G(gzn, gy, gy)}.
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Using induction we get
max{G(gwn+1, gx, gx), G(gzn+1, gy, gy)}

≤ k max{G(gwn, gx, gx), G(gzn, gy, gy)},
≤ k2 max{G(gwn−1, gx, gx), G(gzn−1, gy, gy)},
≤ ... ≤ kn max{G(gw1, gx, gx), G(gz1, gy, gy)}.(2.18)

Letting n → ∞, in (2.18) we obtain
lim
n→∞

max{G(gwn+1, gx, gx), G(gzn+1, gy, gy)} = 0.

Consequently,
(2.19) lim

n→∞
G(gwn+1, gx, gx) = 0 and lim

n→∞
G(gzn+1, gy, gy) = 0.

Similarly, one can show that
(2.20) lim

n→∞
G(gwn+1, gu, gu) = 0 and lim

n→∞
G(gzn+1, gv, gv) = 0.

Therefore, from (2.19), (2.20) and the uniqueness of the limit, we get gx = gu and gy = gv.
So (2.13) holds.

Denote now gx = p and gy = q, so we have that
(2.21) gp = g(gx) = gF (x, y) and gq = g(gy) = gF (y, x).

By definition of the sequences {xn} and {yn} we have
gxn = F (x, y) = F (xn−1, yn−1) and gyn = F (y, x) = F (yn−1, xn−1),

so continuity F implies
F (xn−1, yn−1) → F (x, y) and gxn → F (x, y),

also
F (yn−1, xn−1) → F (y, x) and gyn → F (y, x).

G-compatibility of g and F implies that
G(gF (xn, yn), F (gxn, gyn), F (gxn, gyn)) → 0, n → ∞,

so gF (x, y) = F (gx, gy). From (2.21) we get that
gp = g(gx) = gF (x, y) = F (gx, gy) = F (p, q),(2.22)

in a similar way,
(2.23) gq = g(gy) = gF (y, x) = F (gy, gx) = F (q, p),

so gp = F (p, q) and gq = F (q, p). Thus, (p, q) is a coincidence point. Then, from (2.13) with
u = p and v = q, we have gx = gp = p and gy = gq = q, that is,
(2.24) gp = p and gq = q.

From (2.22), (2.23) and (2.24), we get
p = gp = F (p, q) and q = gq = F (q, p).

Therefore, (p, q) is a common coupled fixed point of g and F . To prove the uniqueness, assume
that (x1, x2) is another coupled common fixed point. Then by (2.13), we have x1 = gx1 =
gp = p and x2 = gx2 = gq = q. This completes the proof. □
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The following theorem extends Theorem 2.7 in [12].

Theorem 2.10. In addition to the hypotheses of Theorem 2.7, suppose that,
(c) for every two elements (x, y), (u, v) ∈ X × X, there exists (w, z) ∈ X × X such that
(F (w, z), F (z, w)) is comparable to both (F (x, y), F (y, x)) and (F (u, v), F (v, u)).
Then F and g have a unique common coincidence fixed point, that is, there exists a unique
(p, q) ∈ X ×X such that p = gp = F (p, q) and q = gq = F (q, p).

Proof. The proof is similar to the proof of Theorem 2.9. □

By definition G(x, y, z) = d(x,y)+d(y,z)+d(z,x)
2 , in Theorem 2.10, we have the following result.

Corollary 2.11 (see [12, Theorem 2.7] ). In addition to the hypotheses of Theorem 1.16,
suppose that, for every (x, y), (u, v) ∈ X × X, there exists (w, z) ∈ X × X such that
(F (w, z), F (z, w)) is comparable to both (F (x, y), F (y, x)) and (F (u, v), F (v, u)).
Then F has a unique common couple coincidence point, that is, there exists a unique
(p, q) ∈ X ×X such that p = gp = F (p, q) and q = gq = F (q, p).

Theorem 2.12. In addition to the hypotheses of Theorem 2.6, suppose that,
(c) for every two elements (x, y), (u, v) ∈ X × X, there exists (w, z) ∈ X × X such that
(F (w, z), F (z, w)) is comparable to both (F (x, y), F (y, x)) and (F (u, v), F (v, u)).
Then F and g have a unique common couple fixed point, that is, there exists a unique
(p, q) ∈ X ×X such that p = F (p, q) and q = F (q, p).

Proof. Let g = IX and apply Theorem 2.9. □

Theorem 2.13. In addition to the hypotheses of Theorem 2.3, if gx0 ≍ gy0, then F and g
have a unique common coupled coincidence point (x, y) ∈ X × X such that gx = F (x, y) =
F (y, x) = gy.

Proof. Following the proof of Theorem 2.3, F and g have a coupled coincidence point. We
only have to show that gx = gy. By Theorem 2.3, gxn → u and gyn → v and u, v ∈ g(X),
we get that gxn ≍ u = gx and gyn ≍ v = gy for some x, y ∈ X and n sufficiently large. Since
gx0 ≍ gy0, By using mathematical induction and mixed monotone property of F , one can
show that

gxn ≍ gyn forall n ≥ 0.

where gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn), n = 0, 1, ....
Thus, by (2.1) we have

G(gxn+1, gyn+1, gyn+1) = G(F (xn, yn), F (yn, xn), F (yn, xn))

≤ k max{G(gxn, gyn, gyn), G(gyn, gxn, gxn)}.

Passing to the limit when n → ∞, since gxn → gx and gyn → gy, we get (1−k)G(gx, gy, gy) ≤
0. So G(gx, gy, gy) = 0. Hence gx = F (x, y) = F (y, x) = gy. □

Theorem 2.14. In addition to the hypotheses of Theorem 2.6, if x0 ≍ y0, then F has a fixed
point,that is, there exist a x ∈ X such that x = F (x, x).

Proof. Let g = IX and apply Theorem 2.13. □
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3. Examples
In the section, some examples are presented.

Example 3.1. Let X = [0, 1], Then (X,⪯) is a partially ordered set with the natural ordering
of real numbers. let G be the G- metric on X ×X ×X defined as follows:

G(x, y, z) = max{|x− y|, |y − z|, |z − x|} ∀ x, y, z ∈ X.

Define g : X → X by g(x) = x2 and F : X ×X :→ X by

F (x, y) =
x2 + 3y2

12
∀ x, y ∈ X.

Obviously, (X,G) is a complete G-metric space, F and g satisfy property (1.2), g is con-
tinuous, g(X) is closed and also F (X ×X) ⊆ g(X)

We will check that g and F are G-compatible. Let {xn} and {yn} be two sequences in X
such that

lim
n→∞

gxn = lim
n→∞

F (xn, yn) = a and lim
n→∞

gyn = lim
n→∞

F (yn, xn) = b.

Then a+3b
12 = a and b+3a

12 = b, wherefore it follows that a = b = 0. Now, for all n ≥ 0,
g(xn) = x2n, g(yn) = y2n, we have

G(gF (xn, yn), F (gxn, gyn), F (gxn, gyn))

= G((
xn

2 + 3yn
2

12
)2,

xn
4 + 3yn

4

12
,
xn

4 + 3yn
4

12
)

= max

{
|(xn

2 + 3yn
2

12
)2 − xn

4 + 3yn
4

12
|, |xn

4 + 3yn
4

12
− xn

4 + 3yn
4

12
|,

|xn
4 + 3yn

4

12
− (

xn
2 + 3yn

2

12
)2|

}
→ 0 (n → ∞),

and similarly, G(gF (yn, xn), F (gyn, gxn), F (gyn, gxn)) → 0. Hence g and F are G-compatible.
Let x0 = 0 and y0 = c > 0 be two points in X. Then

g(x0) = g(0) = 0 ≤ 3c2

12
= F (0, c) = F (x0, y0) and

g(y0) = g(c) = c2 ≥ c2

12
= F (c, 0) = F (y0, x0).

Consequently, g(x0) ≍ F (x0, y0) and g(y0) ≍ F (y0, x0).
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We next verify inequality (2.1) of Theorem 2.2. We take x, y, u, v, z, w ∈ X, such that
gx ≍ gu ≍ gz and gy ≍ gv ≍ gw, that is, x2 ≍ u2 ≍ z2 and y2 ≍ v2 ≍ w2. Then

G(F (x, y), F (u, v), F (z, w))

= max

{
|x

2 + 3y2

12
− u2 + 3v2

12
|, |u

2 + 3v2

12
− z2 + 3w2

12
|,

|z
2 + 3w2

12
− x2 + 3y2

12
|
}

≤ max

{
1

12
|x2 − u2|+ 3

12
|y2 − v2|, 1

12
|u2 − z2|+ 3

12
|v2 − w2|,

1

12
|z2 − x2|+ 3

12
|w2 − y2|

}
≤ max

{
4

12
max{|x2 − u2|, |y2 − v2|}, 4

12
max{|u2 − z2|, v2 − w2|},

4

12
max{|z2 − x2|, |w2 − y2|}

}
=

4

12
max

{
max{|x2 − u2|, |u2 − z2|, |z2 − x2|},

max{|y2 − v2|, |v2 − w2|, |w2 − x2|}
}

=
4

12
max{G(gx, gu, gz), G(gy, gv, gw)}.

Hence the required condition of Theorem 2.3 and 2.9 are satisfied and there exists unique
common coupled fixed point (0, 0) of the mappings g and F . Note that F does not satisfy
the g-mixed monotone property. Also, g and F do not commute.

Example 3.2. Let X = R, Then (X,⪯) is a partially ordered set with the natural ordering
of real numbers. let G be the G- metric on X ×X ×X defined as follows:

G(x, y, z) = max{|x− y|, |y − z|, |z − x|} ∀ x, y, z ∈ X.

Define F : X ×X :→ X by

F (x, y) =
1

6
x+

1

4
y ∀ x, y ∈ X.

Obviously, (X,G) is a complete G-metric space, F satisfys property (1.3) and F is contin-
uous.

Also Let x0 = 0 and y0 = c > 0 be two points in X. Then

x0 = 0 ≤ c

5
= F (0, c) = F (x0, y0) and

y0 = c ≥ c

3
= F (c, 0) = F (y0, x0).

Consequently, x0 ≍ F (x0, y0) and gy0 ≍ F (y0, x0).
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We next verify inequality (2.10) of Theorem 2.6. We take x, y, u, v, z, w ∈ X, such that
x ≍ u ≍ z and y ≍ v ≍ w. Then

G(F (x, y), F (u, v), F (z, w))

= max

{
|1
6
(x− u)− 1

4
(y − v)|, |1

6
(u− z)− 1

4
(v − w)|, |1

6
(z − x)− 1

4
(w − y)|

}
≤ max

{
1

4
(|x− u|+ |y − v|), 1

4
(|u− z|+ |v − w|), 1

4
(|z − x|+ |w − y|)

}
≤ max

{
2

4
max{|x− u|, |y − v|}, 2

4
max{|u− z|, v − w|}, 2

4
max{|z − x|, |w − y|}

}
=

2

4
max

{
max{|x− u|, |u− z|, |z − x|},max{|y − v|, |v − w|, |w − x|}

}
=

1

2
max{G(x, u, z), G(y, v, w)}.

So condition of (2.10) of Theorem 2.6 is hold with k = 1
2 .

Hence the required condition of Theorem 2.13 satisfied and there exist a unique couple
fixed point (0, 0) of F . Note that F does not satisfy the mixed monotone property.
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